Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669116

RESUMO

Identification of branched-chain amino acid (BCAA) oxidation enzymes in the nucleus led us to predict that they are a source of the propionyl-CoA that is utilized for histone propionylation and, thereby, regulate gene expression. To investigate the effects of BCAAs on the development of cardiac hypertrophy and failure, we applied pressure overload on the heart in mice maintained on a diet with standard levels of BCAAs (BCAA control) versus a BCAA-free diet. The former was associated with an increase in histone H3K23-propionyl (H3K23Pr) at the promoters of upregulated genes (e.g., cell signaling and extracellular matrix genes) and a decrease at the promoters of downregulated genes (e.g., electron transfer complex [ETC I-V] and metabolic genes). Intriguingly, the BCAA-free diet tempered the increases in promoter H3K23Pr, thus reducing collagen gene expression and fibrosis during cardiac hypertrophy. Conversely, the BCAA-free diet inhibited the reductions in promoter H3K23Pr and abolished the downregulation of ETC I-V subunits, enhanced mitochondrial respiration, and curbed the progression of cardiac hypertrophy. Thus, lowering the intake of BCAAs reduced pressure overload-induced changes in histone propionylation-dependent gene expression in the heart, which retarded the development of cardiomyopathy.


Assuntos
Aminoácidos de Cadeia Ramificada , Histonas , Camundongos , Animais , Histonas/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Coração , Dieta , Cardiomegalia/genética
2.
Sci Total Environ ; 869: 161732, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682552

RESUMO

Ca/Fe-rich antibiotic fermentation residues (AFRs), a type of hazardous waste, can be regarded as recyclable biomass and metal resources. However, concurrent detoxification and reutilization of biomass and metals resources from AFRs have never been reported before. In this study, Ca/Fe-rich vancomycin fermentation residues were pyrolyzed into biochar to adsorb phosphate for the first time. The residual vancomycin and antibiotic resistance genes were completely decomposed during pyrolysis. The resultant Ca/Fe-rich biochar exhibited excellent performance at adsorbing phosphate without further modifications. The process had rapid kinetics and a maximum adsorption capacity of 102 mg P/g. Ca and Fe were the active sites, whereas different mechanisms were observed under acidic and alkaline conditions. Surprisingly, HCO3- enhanced phosphate adsorption with an increase of adsorption capacity from 43.9 to 71.0 mg/g when HCO3- concentration increased from 1 to 10 mM. Furthermore, actual wastewater could be effectively treated by the biochar. The phosphate-rich spent biochar significantly promoted seed germination (germination rate: 96.7 % vs. 80.0 % in control group, p < 0.01) and seedling growth (shoot length was increased by 57.9 %, p < 0.01) due to the slow release of bioavailable phosphate, and thus could be potentially used as a phosphorous fertilizer. Consequently, the hazardous waste was turned into phosphorous fertilizer, with the additional benefits of detoxifying AFRs, reutilizing biomass and metal resources from AFRs, controlling phosphate pollution, and recovering phosphate from wastewater.


Assuntos
Fosfatos , Águas Residuárias , Fosfatos/química , Fertilizantes , Fermentação , Antibacterianos , Pirólise , Vancomicina , Resíduos Perigosos , Fósforo , Carvão Vegetal/química , Adsorção , Cinética
3.
Nat Prod Res ; : 1-7, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705315

RESUMO

Traditional medicine, 'LuRu', is a commonly used Tibetan medicine for clearing away heat and detoxifying. Dried products of Pedicularis flava and Pedicularis muscicola are often used as 'LuRu' in the market. This study aims to compare the chemical constituents of P. flava and P. muscicola using GC-MS and UPLC-TOF-MS, and confirm which plant species is more suitable to be used as 'LuRu'. A total of 46 and 68 compounds were identified from the volatile and non-volatile components, respectively. Out of these, 17 and 37 volatile and non-volatile components, respectively, had pharmacological activities. P. flava showed a higher content of the same active components than P. muscicola. Good biological activities are only observed in the unique components in P. flava, and not in P. muscicola. The two herbs should not be mixed in clinical medication. Our study shows that P. flava is better suited as a high-quality herb for the Tibetan medicine, 'LuRu'.


Volatile components of Tibetan Pedicularis flava and Pedicularis muscicola were analysed for the first timewiooi.Non-volatile components of Tibetan Pedicularis flava and Pedicularis muscicola were analysed for the first time.Differences in chemical composition and content between Pedicularis flava and Pedicularis muscicola were studied.

4.
Sci Total Environ ; 824: 153833, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35151752

RESUMO

In this study, a novel and low-cost seawater-modified biochar (SBC) was fabricated via the pyrolysis of fir wood waste followed by co-precipitation modification using seawater as the Ca/Mg source. The co-precipitation pH was a vital factor during modification, and the optimal pH was 10.50 according to calculations using PHREEQC 2.5 and experiments. The characterizations indicated that Ca and Mg were loaded on the SBC as irregular CaCO3 and nanoflake-like Mg(OH)2, respectively, with the latter dominating. The SBC exhibited a high maximum adsorption capacity of 181.07 mg/g for phosphate, calculated using the Langmuir model, excellent adsorption performance under acidic and neutral conditions (pH = 3.00-7.00), and remarkable selectivity against Cl-, NO3-, and SO42-. The presence of HCO3- promoted adsorption. The mechanisms behind phosphate adsorption involved electrostatic attraction, ligand exchange, precipitation, and inner-sphere complexation. Mg, rather than Ca, was served as the main adsorptive sites for phosphate. Additionally, the feasibility of treating real-world wastewater was tested in batch (using SBC powders) and fixed-bed column (using SBC granules) experiments. The results indicate that the SBC powders could reduce the phosphate concentration from 1.26 mg P/L to below 0.5 mg P/L at a low dose of 0.50 g/L, and the SBC granules exhibited a high removal efficiency with excellent recyclability; the capacity still remained at 78.92% of the initial capacity after five adsorption-desorption runs. Furthermore, the modification process almost did not increase the production cost of the SBC, which was estimated to be 0.41 $/kg. Our results demonstrate that seawater is a low-cost and efficient modifier for biochar modification, and the resultant SBC demonstrates great potential for treating actual phosphate-containing wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cinética , Fosfatos , Pós , Água do Mar , Poluentes Químicos da Água/análise
5.
Mol Metab ; 53: 101249, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33989779

RESUMO

OBJECTIVE: We previously reported that ß-oxidation enzymes are present in the nucleus in close proximity to transcriptionally active promoters. Thus, we hypothesized that the fatty acid intermediate, butyryl-CoA, is the substrate for histone butyrylation and its abundance is regulated by acyl-CoA dehydrogenase short chain (ACADS). The objective of this study was to determine the genomic distribution of H3K9-butyryl (H3K9Bu) and its regulation by dietary fat, stress, and ACADS and its impact on gene expression. METHODS AND RESULTS: Using genome-wide chromatin immunoprecipitation-sequencing (ChIP-Seq), we show that H3K9Bu is abundant at all transcriptionally active promoters, where, paradoxically, it is most enriched in mice fed a fat-free vs high-fat diet. Deletion of fatty acid synthetase (FASN) abolished H3K9Bu in cells maintained in a glucose-rich but not fatty acid-rich medium, signifying that fatty acid synthesis from carbohydrates substitutes for dietary fat as a source of butyryl-CoA. A high-fat diet induced an increase in ACADS expression that accompanied the decrease in H3K9Bu. Conversely, the deletion of ACADS increased H3K9Bu in human cells and mouse hearts and reversed high-fat- and stress-induced reduction in promoter-H3K9Bu, whose abundance coincided with diminished stress-regulated gene expression as revealed by RNA sequencing. In contrast, H3K9-acetyl (H3K9Ac) abundance was minimally impacted by diet. CONCLUSION: Promoter H3K9 butyrylation is a major histone modification that is negatively regulated by high fat and stress in an ACADS-dependent fashion and moderates stress-regulated gene expression.


Assuntos
Acil-CoA Desidrogenases/metabolismo , Gorduras na Dieta/metabolismo , Histonas/metabolismo , Estresse Fisiológico , Acetilação , Animais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
6.
Cell Signal ; 78: 109866, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33271223

RESUMO

Adiponectin is one of the most abundant circulating hormones, which through adenosine monophosphate-activated protein kinase (AMPK), enhances fatty acid and glucose oxidation, and exerts a cardioprotective effect. However, its effects on cellular bioenergetics have not been explored. We have previously reported that 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR, an AMPK activator) enhances mitochondrial respiration through a succinate dehydrogenase (SDH or complex II)-dependent mechanism in cardiac myocytes, leading us to predict that Adiponectin would exert a similar effect via activating AMPK. Our results show that Adiponectin enhances basal mitochondrial oxygen consumption rate (OCR), ATP production, and spare respiratory capacity (SRC), which were all abolished by the knockdown of AMPKγ1, inhibition of SDH complex assembly, via the knockdown of the SDH assembly factor 1 (Sdhaf1), or inhibition of SDH activity. Additionally, Adiponectin alleviated hypoxia-induced reductions in OCR and ATP production, in a Sdhaf1-dependent manner, whereas overexpression of Sdhaf1 confirmed its sufficiency for mediating these effects. Importantly, the levels of holoenzyme SDH under the various conditions correlated with OCR. We also show that the effects of Adiponectin, AMPK, Sdhaf1, as well as, SDH complex assembly all required sirtuin 3 (Sirt3). In conclusion, Adiponectin potentiates mitochondrial bioenergetics via promoting SDH complex assembly in an AMPK-, Sdhaf1-, and Sirt3-dependent fashion in cardiac myocytes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/metabolismo , Metabolismo Energético , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Succinato Desidrogenase/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Adiponectina/genética , Animais , Hipóxia Celular , Humanos , Ratos , Ratos Sprague-Dawley , Succinato Desidrogenase/genética
7.
Biochim Biophys Acta Gene Regul Mech ; 1862(10): 194436, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31682939

RESUMO

Histone H2A.Z plays an essential role in regulating transcriptional rates and memory. Interestingly, H2A.Z-bound nucleosomes are located in both transcriptionally active and inactive promotors, with no clear understanding of the mechanisms via which it differentially regulates transcription. We hypothesized that its functions are mediated through recruitment of regulatory proteins to promoters. Using rapid chromatin immunoprecipitation-mass spectrometry, we uncovered the association of H2A.Z-bound chromatin with the metabolic enzymes, oxoglutarate dehydrogenase (OGDH) and acetyl-CoA acyltransferase 2 (ACAA2). Recombinant green florescence fusion proteins, combined with mutations of predicted nuclear localization signals, confirmed their nuclear localization and chromatin binding. Conclusively, chromatin immunoprecipitation-deep sequencing, confirmed the predominant association of OGDH and ACAA2 with H2A.Z-occupied transcription start sites and enhancers, the former of which we confirmed is conserved in both mouse and human tissue. Furthermore, H2A.Z-deficient human HAP1 cells exhibited reduced chromatin-bound metabolic enzymes, accompanied with reduced posttranslational histone modifications, including acetylation and succinylation. Specifically, knockdown of OGDH diminished H4 succinylation. Thus, the data reveal that select metabolic enzymes are assembled at active, H2A.Z-occupied, promoters, for potential site-directed production of metabolic intermediates that are required for histone modifications.


Assuntos
Acetilcoenzima A/genética , Acetil-CoA C-Aciltransferase/genética , Histonas/genética , Complexo Cetoglutarato Desidrogenase/genética , Acetilação , Animais , Cromatina/genética , Código das Histonas/genética , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Nucleossomos/genética , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional/genética , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição
8.
Biochim Biophys Acta Gene Regul Mech ; 1861(5): 481-496, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29524612

RESUMO

The mechanisms that regulate H2A.Z and its requirement for transcription in differentiated mammalian cells remains ambiguous. In this study, we identified the interaction between the C-terminus of ANP32e and N-terminus of H2A.Z in a yeast two-hybrid screen. Knockdown of ANP32e resulted in proteasomal degradation and nuclear depletion of H2A.Z or of a chimeric green florescence protein fused to its N-terminus. This effect was reversed by inhibition of protein phosphatase 2A (PP2A) and, conversely, reproduced by overexpression of its catalytic subunit. Accordingly, knockdown of ANP32e inhibited phosphorylation of H2A.Z, whereas a mutation of serine-9 proved its requirement for both the protein's stability and nuclear localization, as did knockdown of the nuclear mitogen and stress-induced kinase 1. Moreover, ANP32e's knockdown also revealed its differential requirement for cell signaling and gene expression, whereas, genome-wide binding analysis confirmed its co-localization with H2A.Z at transcription start sites, as well as, gene bodies of inducible and tissue-specific genes. The data also suggest that H2A.Z restricts transcription, which is moderated by ANP32e at the promoter and gene bodies of expressed genes. Thus, ANP32e, through inhibition of PP2A, is required for nucleosomal inclusion of H2A.Z and the regulation of gene expression.


Assuntos
Histonas/genética , Proteínas do Tecido Nervoso/genética , Proteína Fosfatase 2/genética , Transcrição Gênica , Sequência de Aminoácidos/genética , Núcleo Celular/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Chaperonas Moleculares , Nucleossomos/genética , Regiões Promotoras Genéticas , Proteína Fosfatase 2/antagonistas & inibidores , Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição
9.
PLoS One ; 10(12): e0145112, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26675618

RESUMO

BACKGROUND: MicroRNAs (miR) are small, posttranscriptional regulators, expressed as part of a longer primary transcript, following which they undergo nuclear and cytoplasmic processing by Drosha and Dicer, respectively, to form the functional mature ~20mer that gets incorporated into the silencing complex. Others and we have shown that mature miR-1 levels decrease with pressure-induced cardiac hypertrophy, however, there is little or no change in the primary transcript encompassing miR-1 stem-loop, suggesting critical regulatory step in microRNA processing. The objective of this study was to investigate the underlying mechanisms regulating miR-1 expression in cardiomyocytes. RESULTS: Here we report that GTPase-activating protein (SH3 domain) binding protein 1 (G3bp1), an endoribonuclease regulates miR-1 processing in cardiomyocytes. G3bp1 is upregulated during cardiac hypertrophy and restricts miR-1 processing by binding to its consensus sequence in the pre-miR-1-2 stem-loop. In accordance, exogenous G3bp1 is sufficient to reduce miR-1 levels, along with derepression of miR-1 targets; General transcription factor IIB (Gtf2b), cyclin dependent factor 9 (Cdk9) and eukaryotic initiation factor 4E (Eif4e). While Cdk9 and Gtf2b are essential for transcription, Eif4e is required for translation. Thus, downregulation of miR-1 is necessary for increase in these molecules. Similar to miR-1 knockdown, G3bp1 overexpression is not sufficient for development of cardiac hypertrophy. Conversely, knockdown of G3bp1 in hypertrophying cardiomyocytes inhibited downregulation of miR-1 and upregulation of its targets along with restricted hypertrophy, suggesting that G3bp1 is necessary for development of cardiac hypertrophy. These results indicate that G3bp1-mediated inhibition of miR-1 processing with growth stimulation results in decrease in mature miR-1 and, thereby, an increase of its targets, which play fundamental roles in the development of hypertrophy. CONCLUSION: G3bp1 posttranscriptionally regulates miRNA-1 processing in the heart, and G3bp1 mediated downregulation of mature miRNA-1 levels is required for the derepression of its targets and increase in gene expression during cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Proteínas de Transporte/metabolismo , MicroRNAs/genética , Animais , Cardiomegalia/genética , Proteínas de Transporte/genética , Células Cultivadas , Quinase 9 Dependente de Ciclina/metabolismo , DNA Helicases , Fator de Iniciação 4E em Eucariotos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Fatores de Transcrição/metabolismo
10.
Circ Heart Fail ; 8(1): 138-48, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25398966

RESUMO

BACKGROUND: We previously reported that specialized and housekeeping genes are differentially regulated via de novo recruitment and pause-release of RNA polymerase II, respectively, during cardiac hypertrophy. However, the significance of this finding remains to be examined. Therefore, the purpose of this study was to determine the mechanisms that differentially regulate these gene groups and exploit them for therapeutic targeting. METHODS AND RESULTS: Here, we show that general transcription factor IIB (TFIIB) and cyclin-dependent kinase 9 are upregulated during hypertrophy, both targeted by microRNA-1, and play preferential roles in regulating those 2 groups of genes. Chromatin immunoprecipitation-sequencing reveals that TFIIB is constitutively bound to all paused, housekeeping, promoters, whereas de novo recruitment of TFIIB and polymerase II is required for specialized genes that are induced during hypertrophy. We exploited this dichotomy to acutely inhibit induction of the latter set, which encompasses cardiomyopathy, immune reaction, and extracellular matrix genes, using locked nucleic acid-modified antisense TFIIB oligonucleotide treatment. This resulted in suppression of all specialized genes, while sparing the housekeeping ones, and, thus, attenuated pathological hypertrophy. CONCLUSIONS: The data for the first time reveal distinct general TFIIB dynamics that regulate specialized versus housekeeping genes during cardiac hypertrophy. Thus, by acutely targeting TFIIB, we were able to inhibit selectively the former set of genes and ameliorate pressure overload hypertrophy. We also demonstrate the feasibility of acutely and reversibly targeting cardiac mRNA for therapeutic purposes using locked nucleic acid-modified antisense oligonucleotides.


Assuntos
Cardiomegalia/genética , Miócitos Cardíacos/metabolismo , RNA/genética , Fator de Transcrição TFIIB/genética , Transcrição Gênica , Animais , Western Blotting , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Modelos Animais de Doenças , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição TFIIB/metabolismo
11.
J Biol Chem ; 288(4): 2546-58, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23229551

RESUMO

Cardiac hypertrophy is characterized by a generalized increase in gene expression that is commensurate with the increase in myocyte size and mass, on which is superimposed more robust changes in the expression of specialized genes. Both transcriptional and posttranscriptional mechanisms play fundamental roles in these processes; however, genome-wide characterization of the transcriptional changes has not been investigated. Our goal was to identify the extent and modes, RNA polymerase II (pol II) pausing versus recruitment, of transcriptional regulation underlying cardiac hypertrophy. We used anti-pol II and anti-histone H3K9-acetyl (H3K9ac) chromatin immunoprecipitation-deep sequencing to determine the extent of pol II recruitment and pausing, and the underlying epigenetic modifications, respectively, during cardiac growth. The data uniquely reveal two mutually exclusive modes of transcriptional regulation. One involves an incremental increase (30-50%) in the elongational activity of preassembled, promoter-paused, pol II, and encompasses ∼25% of expressed genes that are essential/housekeeping genes (e.g. RNA synthesis and splicing). Another involves a more robust activation via de novo pol II recruitment, encompassing ∼5% of specialized genes (e.g. contractile and extracellular matrix). Moreover, the latter subset has relatively shorter 3'-UTRs with fewer predicted targeting miRNA, whereas most miRNA targets fall in the former category, underscoring the significance of posttranscriptional regulation by miRNA. The results, for the first time, demonstrate that promoter-paused pol II plays a role in incrementally increasing housekeeping genes, proportionate to the increase in heart size. Additionally, the data distinguish between the roles of posttranscriptional versus transcriptional regulation of specific genes.


Assuntos
Cardiomegalia/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Miocárdio/metabolismo , Transcrição Gênica , Animais , Animais Recém-Nascidos , Imunoprecipitação da Cromatina , Estudo de Associação Genômica Ampla , Coração/fisiologia , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo
12.
Cardiovasc Res ; 93(4): 645-54, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22219180

RESUMO

AIMS: GATA4 is a transcription factor that is up-regulated during cardiac hypertrophy and plays a fundamental role in myocyte growth and survival. In this study, we investigate the transcriptional vs. post-transcriptional mechanisms that are involved in regulating GATA4 in the heart during neonatal and pressure overload-induced hypertrophic growth. METHODS AND RESULTS: GATA4 protein is significantly higher during pressure overload-induced (2.9 ± 0.4-fold) and neonatal (6.8 ± 1-fold) hypertrophic growth vs. the normal adult mouse heart. Using RNA polymerase II immunoprecipitation combined with deep sequencing, we confirmed that active transcription of the Gata4 gene remained unchanged during hypertrophy, whereas it was two-fold higher in the neonatal vs. adult heart, commensurate with the mRNA levels. These results suggested a post-transcriptional mode of regulation of its expression, which prompted the identification of a conserved sequence in its 3'-untranslated region that was responsible for reduced translation via miR-26b. Overexpression of miR-26b reduced GATA4-dependent transcription, endothelin-induced hypertrophy, and sensitized the cells to apoptotic insults. Additionally, miR-26b targeted phospholipase C-ß1, which, in turn, inhibited miR-26b expression, creating a double-negative feedback loop. Accordingly, overexpression of miR-26b in the heart inhibited up-regulation of its targets and the development of hypertrophy. However, knockdown of miR-26b is not sufficient for inducing hypertrophy. CONCLUSION: Down-regulation of miR-26b in the heart is required for the up-regulation of GATA4 and the induction of pressure-induced cardiac hypertrophy. The results also underscore the functional relevance of miRNAs in regulating gene expression during cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Fator de Transcrição GATA4/metabolismo , MicroRNAs/fisiologia , Processamento Pós-Transcricional do RNA/fisiologia , Animais , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Transcrição Gênica/fisiologia , Regulação para Cima/fisiologia
13.
J Biol Chem ; 285(26): 20281-90, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20404348

RESUMO

MicroRNA-21 (miR-21) is highly up-regulated during hypertrophic and cancerous cell growth. In contrast, we found that it declines in cardiac myocytes upon exposure to hypoxia. Thus, the objective was to explore its role during hypoxia. We show that miR-21 not only regulates phosphatase and tensin homologue deleted on chromosome 10 (PTEN), but also targets Fas ligand (FasL). During prolonged hypoxia, down-regulation of miR-21 proved necessary and sufficient for enhancing expression of both proteins. We demonstrate here for the first time that miR-21 is positively regulated via an AKT-dependent pathway, which is depressed during prolonged hypoxia. Accordingly, hypoxia-induced down-regulation of miR-21 and up-regulation of FasL and PTEN were reversed by activated AKT and reproduced by a dominant negative mutant, wortmannin, or PTEN. Moreover, the antiapoptotic function of AKT partly required miR-21, which was sufficient for inhibition of caspase-8 activity and mitochondrial damage. In consensus, overexpression of miR-21 in a transgenic mouse heart resulted in suppression of ischemia-induced up-regulation of PTEN and FasL expression, an increase in phospho-AKT, a smaller infarct size, and ameliorated heart failure. Thus, we have identified a unique aspect of the function of AKT by which it inhibits apoptosis through miR-21-dependent suppression of FasL.


Assuntos
Apoptose , Proteína Ligante Fas/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Animais Recém-Nascidos , Western Blotting , Hipóxia Celular , Linhagem Celular Tumoral , Células Cultivadas , Proteína Ligante Fas/genética , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , Ratos , Ratos Sprague-Dawley
14.
Cell Signal ; 22(7): 1054-62, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20193759

RESUMO

We have recently reported that downregulation of miR-199a-5p is necessary and sufficient for inducing upregulation of its targets, including hypoxia-inducible factor-1 alpha (Hif-1 alpha) and Sirt1, during hypoxia preconditioning (HPC). Conversely, others and we have reported that miR-199a-5p is upregulated during cardiac hypertrophy. Thus, the objective of this study was to delineate the signaling pathways that regulate the expression of miR-199a-5p and its targets, and their role in myocyte survival during hypoxia. Since HPC is mediated through activation of the AKT pathway, we questioned if AKT is sufficient for inducing downregulation of miR-199a-5p. Our present study shows that overexpression of a constitutively active AKT (caAKT) induced 70% reduction in miR-199a-5p and was associated with a robust increase in HiF-1 alpha (10+/-2 fold) and Sirt1 (4+/-0.8 fold) that was reversed by overexpression of miR-199a-5p. Similarly, insulin receptor-stimulated activation of the AKT pathway induced downregulation of miR-199a-5p and upregulation of its targets. In contrast, beta-adrenergic receptor (beta AR) activation in vitro and in vivo, induced 1.8-3.5-fold increase in miR-199a-5p. Accordingly, we predicted that beta AR would antagonize AKT-induced, miR-199a-5p-dependent, upregulation of Hif-1 alpha and Sirt1. Indeed, pre-treating the myocytes with isoproterenol before applying HPC, caAKT, or insulin resulted in 87+/-3%, 75+/-15%, and 100% reductions in Hif-1 alpha expression, respectively, and sensitized the cells to hypoxic injury. Thus, activation of beta-adrenergic signaling counteracts the survival effects of the AKT pathway via upregulating miR-199a-5p.


Assuntos
MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Agonistas Adrenérgicos beta/farmacologia , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Hipóxia Celular , Células Cultivadas , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Insulina/farmacologia , Isoproterenol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Sirtuína 1/biossíntese , Regulação para Cima
15.
Circ Res ; 104(7): 879-86, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19265035

RESUMO

MicroRNAs are posttranscriptional gene regulators that are differentially expressed during various diseases and have been implicated in the underlying pathogenesis. We report here that miR-199a is acutely downregulated in cardiac myocytes on a decline in oxygen tension. This reduction is required for the rapid upregulation of its target, hypoxia-inducible factor (Hif)-1alpha. Replenishing miR-199a during hypoxia inhibits Hif-1alpha expression and its stabilization of p53 and, thus, reduces apoptosis. On the other hand, knockdown of miR-199a during normoxia results in the upregulation of Hif-1alpha and Sirtuin (Sirt)1 and reproduces hypoxia preconditioning. Sirt1 is also a direct target of miR-199a and is responsible for downregulating prolyl hydroxylase 2, required for stabilization of Hif-1alpha. Thus, we conclude that miR-199a is a master regulator of a hypoxia-triggered pathway and can be exploited for preconditioning cells against hypoxic damage. In addition, the data demonstrate a functional link between 2 key molecules that regulate hypoxia preconditioning and longevity.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Precondicionamento Isquêmico Miocárdico , MicroRNAs/metabolismo , Isquemia Miocárdica/terapia , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Sirtuínas/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/genética , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mitocôndrias Cardíacas/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/patologia , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Sirtuína 1 , Sirtuínas/genética , Suínos , Transdução Genética
16.
Mol Biol Cell ; 19(8): 3272-82, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18508928

RESUMO

The posttranscriptional regulator, microRNA-21 (miR-21), is up-regulated in many forms of cancer, as well as during cardiac hypertrophic growth. To understand its role, we overexpressed it in cardiocytes where it revealed a unique type of cell-to-cell "linker" in the form of long slender outgrowths and branches. We subsequently confirmed that miR-21 directly targets and down-regulates the expression of Sprouty2 (SPRY2), an inhibitor of branching morphogenesis and neurite outgrowths. We found that beta-adrenergic receptor (betaAR) stimulation induces up-regulation of miR-21 and down-regulation of SPRY2 and is, likewise, associated with connecting cell branches. Knockdown of SPRY2 reproduced the branching morphology in cardiocytes, and vice versa, knockdown of miR-21 using a specific 'miRNA eraser' or overexpression of SPRY2 inhibited betaAR-induced cellular outgrowths. These structures enclose sarcomeres and connect adjacent cardiocytes through functional gap junctions. To determine how this aspect of miR-21 function translates in cancer cells, we knocked it down in colon cancer SW480 cells. This resulted in disappearance of their microvillus-like protrusions accompanied by SPRY2-dependent inhibition of cell migration. Thus, we propose that an increase in miR-21 enhances the formation of various types of cellular protrusions through directly targeting and down-regulating SPRY2.


Assuntos
Proteínas de Membrana/metabolismo , MicroRNAs/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Comunicação Celular , Movimento Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Regulação para Baixo , Junções Comunicantes , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases , Processamento Pós-Transcricional do RNA , Receptores Adrenérgicos beta/metabolismo , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...